## CARDIOSPERMINSULFATE - A SULPHUR CONTAINING

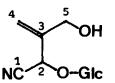
## CYANOGENIC GLUCOSIDE FROM CARDIOSPERMUM GRANDIFLORUM

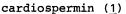
W. Hübel\* und A. Nahrstedt Institut für Pharmazeutische Biologie der Techn. Univ. D-3300 Braunschweig, Germany

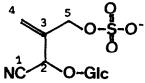
<u>Summary</u>: Isolation and structure elucidation of cardiospermin-5-sulfate, the first reported sulphur containing cyanogenic glycoside is described. The compound cooccurs with cardiospermin in Cardiospermum grandiflorum Sw.(Sapin-daceae).

Cardiospermin (<u>1</u>, 2- $\beta$ -D-glucopyranosyloxy-3-hydroxymethylbutyronitril-3-en) was reported as the only cyanogenic glucoside in the vegetative portion of Cardiospermum grandiflorum Sw. (Sapindaceae)<sup>1</sup>. Controlling the ontogenetic variability of all parts of C.grandiflorum with respect to <u>1</u> and the enzymatically releasible hydrocyanic acid it was shown especially for leaves that at distinct times significant differences are found in the yield of <u>1</u> and total cyanide liberated by treatment with  $\beta$ -glucosidase<sup>2</sup>. Chromatography of methanolic extracts on silica gel showed <u>1</u> and a second cyanogenic band with a smaller Rf-value.

This second cyanogenic compound was purified from 180 g freeze dried leaves by column chromatography on cellulose (iPropOH/nButOH/H<sub>2</sub>O 60:30:10) followed by preparative thin layer chromatography on silica gel (EtOAc/MeOH/H<sub>2</sub>O 60:30: 10). The resulting polar compound (50 mg) still contained silica gel and some water after lyophilization. Enzymatic hydrolysis by ß-glucosidase (Serva 22830) yielded glucose, hydrocyanic acid and sulfate. Hydrolysis by UV-light in acid solution<sup>3</sup> (254 nm, 2 x 40 W, 5 cm distance, 0.2 N HCl, 5 - 30 min) resulted in glucose, traceable amounts of <u>1</u> and sulfate. Sulfate was also produced by treatment with aryl sulfatase (Sigma 8629). These results indicate the new compound to be a cardiospermin derivative. The production of sulfate during alkaline and acid hydrolysis proves the existence of a sulfuric ester. Elementary analysis resulted in a C:N:S ratio of 11:1:0.7 indicating one sulfate group per molecule (O and H were not evaluated, as the compound still contained silica gel and water). FD-MS showed a  $M^+$  at 400 (cardiosperminsulfate-anion + Na<sup>+</sup> + Na<sup>+</sup>).


As shown in table 1 in many respects the <sup>1</sup>H-NMR spectrum is similar to that of <u>1</u> and cardiospermin-5-p-hydroxybenzoate<sup>4</sup>. Compared to cardiospermin the paramagnetic shift of the  $C_5$ -methylenprotons indicates a substitution at the primary hydroxy group; a coupling constant of 7.5 Hz of the doublet of the anomeric glucose proton proves  $\beta$ -configuration of the glycosidic linkage. Integration of the C<sub>2</sub>- and C<sub>4</sub>-protons and those of the glucose moiety obtained in D<sub>2</sub>O/TFA-d<sub>1</sub> results in a ratio of 1:2:6 demonstrating a ratio of 1:1 for aglycon and glucose.


|                                   | с <sub>2</sub> -н | с <sub>4</sub> -н <sub>2</sub> | с <sub>5</sub> -н <sub>2</sub> | Glc-H <sub>1</sub> | other Glc-H <sub>s</sub> |
|-----------------------------------|-------------------|--------------------------------|--------------------------------|--------------------|--------------------------|
| cardiospermin                     | 5.45 s            | 5.55 s<br>5.51 s               | 4.22 s                         | 4.51 d<br>J=7.5 Hz | 3.2 - 4                  |
| new glucoside                     | 5.64 s            | 5.73 s<br>5.64 s               | 4.68 s                         | 4.60 d<br>J=7.5 Hz | 3.2 - 4                  |
| cardiospermin-5-<br>p-OH-benzoate | 5.65 s            | 5.70 s<br>5.75 s               | 4.90 s                         | 4.65 d<br>J=7.5 Hz | 3.2 - 4                  |


<u>Table 1</u>: <sup>1</sup>H-NMR-data of cardiospermin, cardiospermin-5-p-hydroxybenzoate and the new polar glucoside. All spectra recorded in MeOH-d<sub>4</sub> using a Varian XL 100 spectrometer. All chemical shifts given in 6-values relative to TMS.

The proton decouplet <sup>13</sup>C-NMR of the polar compound exhibits the entire 11 carbon atoms in agreement with the proposed structure at the following resonances:  $\delta$ =136.32 (=CH-),  $\delta$ =121.97 (CH<sub>2</sub>=),  $\delta$ =116.76 (-CN),  $\delta$ =100.2 (Glc-C<sub>1</sub>),  $\delta$ =76.04 (Glc-C<sub>3</sub>),  $\delta$ =75.04 (Glc-C<sub>5</sub>),  $\delta$ =72.50 (Glc-C<sub>2</sub>),  $\delta$ =69.25 (Glc-C<sub>4</sub>),  $\delta$ =67.36 (-CH<sub>2</sub>-O-),  $\delta$ =66.67 (-CH-O-),  $\delta$ =60.47 (Glc-C<sub>6</sub>). D<sub>2</sub>O, Varian XL 100.

With respect to the results discussed above we propose structure 2 for the new cyanogenic glucoside.







cardiospermin-5-sulfate (2)

Acknowledgements: We are most thankful to the following for the measurements of physical data: J.Bergert and Dr.R.Kutschan, Inst.Org. Chemie (H-NMR), Dr.V.Wray, Ges.Biotechn.Forsch.(H-NMR, C-NMR), Dr.D.Geffken, Inst.Pharmaz. Chemie (elementary analysis) and Dr.Rapp, Varian-Bremen (FD-MS).

Literature: 1. Seigler, D.S., C.Eggerding, D.C.Butterfield (1974) Phytochemistry <u>13</u>, 2330

- 2. Hübel, W. (1978) Dissertation Univ. Freiburg
- Takaishi, K., H.Kuwajima, H.Hiroko, H.Go (1977) Chem.Pharm. Bull. <u>25</u>, 3075
- 4. Nahrstedt, A. (1976) Z. Naturforsch. 31c, 397

(Received in Germany 51 August 1979)